Pure Transformers are Powerful Graph Learners
|
|
5
|
980
|
August 17, 2023
|
Graph-Bert: Only Attention is Needed for Learning Graph Representations
|
|
0
|
1527
|
July 26, 2023
|
Attending to Graph Transformers
|
|
0
|
1661
|
July 21, 2023
|
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
|
|
0
|
1122
|
July 7, 2023
|
TabPFN: A Transformer That Solves Small Tabular Classification
|
|
0
|
736
|
June 19, 2023
|
TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual
|
|
0
|
484
|
June 15, 2023
|
Inductive Matrix Completion Based on Graph Neural Networks
|
|
0
|
520
|
June 15, 2023
|
Complex Embeddings for Simple Link Prediction
|
|
0
|
509
|
June 15, 2023
|
High-Resolution Image Synthesis with Latent Diffusion Models
|
|
0
|
522
|
June 15, 2023
|
Do Transformers Really Perform Bad for Graph Representation?
|
|
0
|
601
|
June 15, 2023
|
Global Self-Attention as a Replacement for Graph Convolution
|
|
0
|
480
|
June 15, 2023
|
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
|
|
0
|
472
|
June 15, 2023
|
Scalable Graph Neural Networks for Heterogeneous Graphs
|
|
0
|
410
|
June 15, 2023
|
Position-based Hash Embeddings For Scaling Graph Neural Networks
|
|
0
|
473
|
June 15, 2023
|
Position-aware Graph Neural Networks
|
|
0
|
544
|
June 15, 2023
|
Graph Neural Networks with Learnable Structural and Positional Representations
|
|
0
|
479
|
June 15, 2023
|
Inductive Graph Embeddings through Locality Encodings
|
|
0
|
521
|
June 15, 2023
|