Pure Transformers are Powerful Graph Learners
|
|
5
|
826
|
August 17, 2023
|
Graph-Bert: Only Attention is Needed for Learning Graph Representations
|
|
0
|
1449
|
July 26, 2023
|
Attending to Graph Transformers
|
|
0
|
1555
|
July 21, 2023
|
LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation
|
|
0
|
1016
|
July 7, 2023
|
TabPFN: A Transformer That Solves Small Tabular Classification
|
|
0
|
650
|
June 19, 2023
|
TwHIN-BERT: A Socially-Enriched Pre-trained Language Model for Multilingual
|
|
0
|
417
|
June 15, 2023
|
Inductive Matrix Completion Based on Graph Neural Networks
|
|
0
|
437
|
June 15, 2023
|
Complex Embeddings for Simple Link Prediction
|
|
0
|
446
|
June 15, 2023
|
High-Resolution Image Synthesis with Latent Diffusion Models
|
|
0
|
452
|
June 15, 2023
|
Do Transformers Really Perform Bad for Graph Representation?
|
|
0
|
498
|
June 15, 2023
|
Global Self-Attention as a Replacement for Graph Convolution
|
|
0
|
418
|
June 15, 2023
|
Node Feature Extraction by Self-Supervised Multi-scale Neighborhood Prediction
|
|
0
|
410
|
June 15, 2023
|
Scalable Graph Neural Networks for Heterogeneous Graphs
|
|
0
|
342
|
June 15, 2023
|
Position-based Hash Embeddings For Scaling Graph Neural Networks
|
|
0
|
378
|
June 15, 2023
|
Position-aware Graph Neural Networks
|
|
0
|
464
|
June 15, 2023
|
Graph Neural Networks with Learnable Structural and Positional Representations
|
|
0
|
417
|
June 15, 2023
|
Inductive Graph Embeddings through Locality Encodings
|
|
0
|
464
|
June 15, 2023
|